Network Layer

Pavlos Grigoriadis - <u>pgrigor@csd.uoc.gr</u> Christina Papachristoudi - <u>chrisp@csd.uoc.gr</u>

Network Layer

Data Plane

How a router forwards the packets that arrive in its incoming interfaces to outgoing interfaces

Consists of:

- Header inspection
- Implemented mainly in hardware
- Follows the instructions given by the Control Plane
- Forwarding Table

Control Plane

How a packet is routed among the routers (end-to-end routing).

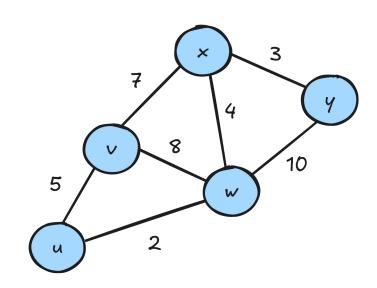
Consists of:

- Implemented mainly in software
- Routing Algorithms and Protocols
- Routing Table

Control Plane

Routing Algorithms

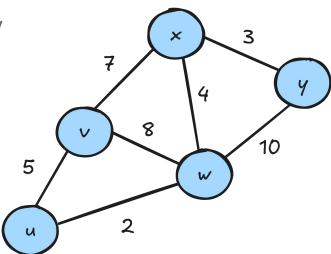
- Goal: to find "good" paths from a source to a destination
- What is a good path?
 - Least-cost Path
 - If all link costs are the same then the least-cost path is the **Shortest Path**
- Mainly two types of routing algorithms
 - Centralized (Link-State)
 - Decentralized



Link-State Routing Algorithms

- Centralized routing algorithms
- Requires knowledge of the entire topology
- That means it takes as input:
 - All the links **between nodes**
 - All the link costs
- How does each node learn all this?
 - Link-state broadcast algorithm
 - Each node broadcasts its link-state information (links to neighbors, costs)
 - At the end every node has the same complete view of the topology
 - Now each node can run the LS algorithm and find the same least-cost paths

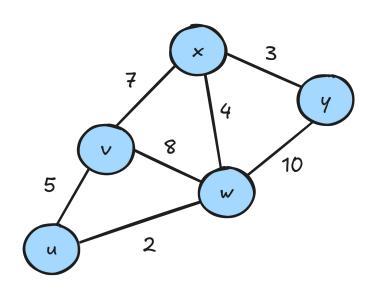
- A **link-state** algorithm
- Computes all the least-cost paths from a source node to all other nodes of the topology
- For **k nodes** it needs **k iterations** to complete



Find the least-cost paths from u to every other router

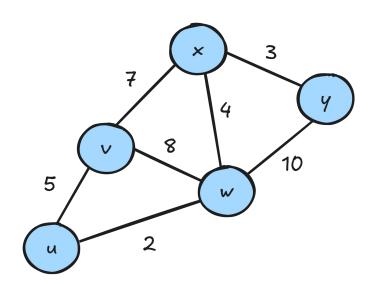
- **D(v)**: Distance from u to v
- **p(v)**: previous node of v on the current path

Nodes	D(v), p(v)	D(w), p(w)	D(x), p(x)	D(y), p(y)
u	5, u	2, u	∞, -	∞, -

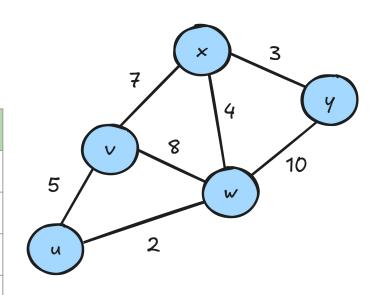


- Choose w because it has the smallest distance
- Add it to the nodes

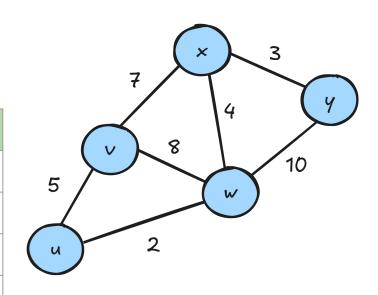
Nodes	D(v), p(v)	D(w), p(w)	D(x), p(x)	D(y), p(y)
u	5, u	2, u	∞, -	∞, -
uw	5, u (10, w)	-	6, w	12, w



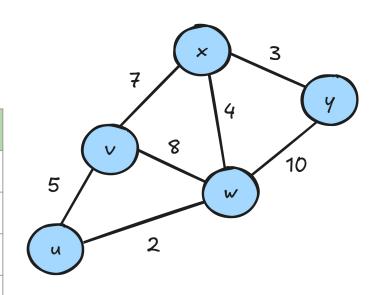
Nodes	D(v), p(v)	D(w), p(w)	D(x), p(x)	D(y), p(y)
u	5, u	2, u	∞, -	∞, -
uw	5, u	-	6, w	12, w
uwv	-	-	6, w (12, v)	12, w



Nodes	D(v), p(v)	D(w), p(w)	D(x), p(x)	D(y), p(y)
u	5, u	2, u	∞, -	∞, -
uw	5, u	-	6, w	12, w
uwv	-	-	6, w	12, w
uwvx	-	-	-	12, w (9, x)



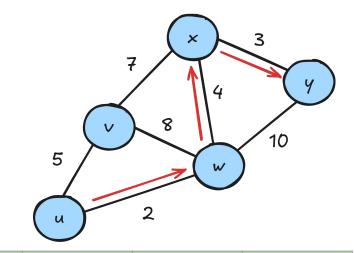
Nodes	D(v), p(v)	D(w), p(w)	D(x), p(x)	D(y), p(y)
u	5, u	2, u	∞, -	∞, -
uw	5, u	-	6, w	12, w
uwv	-	-	6, w	12, w
uwvx	-	-	-	9, x
uwvxy	-	-	-	-



So to find the path from, let's say, **u** → **y**, we choose y and go backwards:

- Previous of y? p(y) = x
- \bullet p(x) = w
- p(w) = u

Path $u \rightarrow y$: $u \rightarrow w \rightarrow x \rightarrow y$



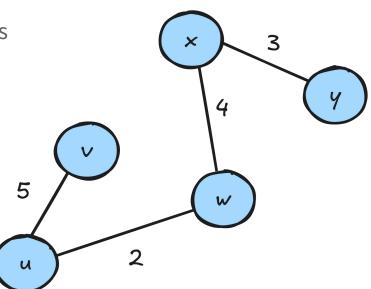
Nodes	D(v), p(v)	D(w), p(w)	D(x), p(x)	D(y), p(y)
u	5, u	2, u	∞, -	∞, -
uw	5, u	-	6, w	12, w
uwv	-	-	6, w	12, w
uwvx	-	-	-	9, x
uwvxy	-	-	-	-

Dijkstra Algorithm - Least-Cost Graph

To find the least-cost graph:

• Find least-cost paths from **u** to all other nodes

 Keep only the nodes and links that exist in these paths

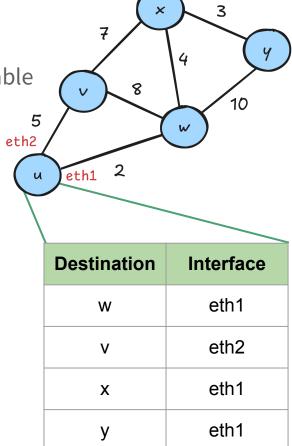


Populating Forwarding Table

Routing algorithms are used to fill up the forwarding table

Based on the least-cost paths:

- Path to y: $\mathbf{u} \rightarrow \mathbf{w} \rightarrow \mathbf{x} \rightarrow \mathbf{y}$
- So in order to reach y → send to w
- So for destination y the outgoing interface: eth1
- And so on...



Decentralized Algorithms

- Each node only knows about the link costs that are directly connected to it
- Each node gets/sends updates from/to its neighbors (only!)

Iterative

- Based on these updates each node calculates the new least-cost path
- These updates continue until there aren't any more changes
- The algorithm has converged

- **Decentralized** routing algorithm
- Keeps a vector of all the costs (distances) to the other nodes
 - hence the name distance vector
- Uses the Bellman-Ford equation

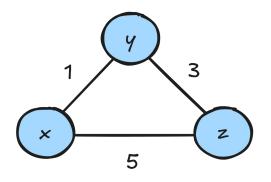
Initialization state

Table of node x

	х	у	z
х	0	1	5
у	∞	∞	∞
z	∞	∞	∞

Table of node y

	х	у	Z
Х	∞	∞	∞
у	1	0	3
z	∞	∞	∞



	х	у	z
х	∞	∞	∞
у	∞	∞	∞
z	5	3	0

Each node advertises its table to the neighbors

x z

Table of node x

	х	у	z
х	0	1	5
у	1	0	3
z	5	3	0

Table of node y

	х	у	Z
х	0	1	5
у	1	0	3
z	5	3	0

Table of node z

	х	у	z
х	0	1	5
у	1	0	3
z	5	3	0

x will advertise table to **y**, **z**

y will advertise table to x, z

z will advertise table to **x**, **y**

Bellman-Ford Equation:

$$D_{x}(y) = \min_{v} \{ c(x, v) + D_{v}(y) \}$$

- **D**_x(y): the least cost from x to y
- **c(x, v)**: the current cost from x to v (based on the current value of node x's vector)
- D_v(y): the least cost from a node v to y

Algorithm runs for every **node v** that is a **neighbor of x**

For neighbor z:

- c(x, z) = 5

For neighbor y:

	х	у	z
х	0	1	5
у	1	0	3
z	5	3	0

Bellman-Ford Equation:

$$D_{x}(y) = \min_{v} \{ c(x, v) + D_{v}(y) \}$$

- **D**_x(y): the least cost from x to y
- **c(x, v)**: the current cost from x to v (based on the current value of node x's vector)
- D_v(y): the least cost from a node v to y

Algorithm runs for every **node v** that is a **neighbor of x**

For neighbor z:

- c(x, z) = 5
- $D_z(y) = 3$

For neighbor y:

	х	у	z
х	0	1	5
у	1	0	3
z	5	3	0

Bellman-Ford Equation:

$$D_{x}(y) = \min_{v} \{ c(x, v) + D_{v}(y) \}$$

- **D**_x(y): the least cost from x to y
- **c(x, v)**: the current cost from x to v (based on the current value of node x's vector)
- D_v(y): the least cost from a node v to y

Algorithm runs for every **node v** that is a **neighbor of x**

For neighbor z:

- c(x, z) = 5

For neighbor y:

	х	у	z
X	0	1	5
у	1	0	3
z	5	3	0

Bellman-Ford Equation:

$$D_{x}(y) = \min_{v} \{ c(x, v) + D_{v}(y) \}$$

- **D**_x(y): the least cost from x to y
- **c(x, v)**: the current cost from x to v (based on the current value of node x's vector)
- D_v(y): the least cost from a node v to y

Algorithm runs for every **node v** that is a **neighbor of x**

For neighbor z:

- c(x, z) = 5

For neighbor y:

- c(x, y) = 1

	х	у	z
х	0	1	5
у	1	0	3
z	5	3	0

Bellman-Ford Equation:

$$D_{x}(y) = \min_{y} \{ c(x, y) + D_{y}(y) \}$$

- **D**_x(y): the least cost from x to y
- **c(x, v)**: the current cost from x to v (based on the current value of node x's vector)
- D_v(y): the least cost from a node v to y

Algorithm runs for every **node v** that is a **neighbor of x**

For neighbor z:

- c(x, z) = 5

For neighbor y:

	х	у	z
X	0	1	5
у	1	0	3
z	5	3	0

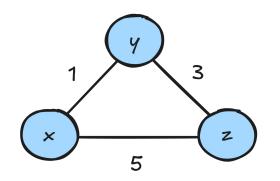
Bellman-Ford Equation:

$$D_{x}(y) = \min_{y} \{ c(x, y) + D_{y}(y) \}$$

- For z: $D_y(y) = c(x, z) + D_y(y) = 5 + 3 = 8$
- For y: $D_x(y) = c(x, y) + D_y(y) = 1 + 0 = 1$

So finally:
$$D_x(y) = \min_{v} \{ c(x, v) + D_v(y) \} = \min(8, 1) = 1$$

- We re-calculated the distance from to x to y based on the neighbors' updates.
- We update x's vector with the new value.
 (In this case it stays the same = 1)



	х	у	z
х	0	1	5
у	1	0	3
z	5	3	0

Each node re-calculates its vector taking into account the vectors of its neighbor

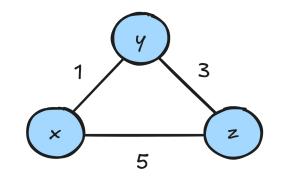


Table of node x

	х	у	z
х	0	1	5
у	1	0	3
z	5	3	0

y:
$$D_x(y) = c(x,y) + D_y(y) = 1 + 0 = 1$$

 $D_x(z) = c(x,y) + D_y(z) = 1 + 3 = 4$

z:
$$D_x(y) = c(x,z) + D_z(y) = 5 + 3 = 8$$

 $D_x(z) = c(x,z) + D_z(z) = 5 + 0 = 5$

Table of node y

		i	
	х	у	Z
X	0	1	5
у	1	0	3
z	5	3	0

x:
$$D_y(x) = c(y,x) + D_x(x) = 1 + 0 = 1$$

 $D_y(z) = c(y,x) + D_x(z) = 1 + 5 = 6$

z:
$$D_y(x) = c(y,z) + D_z(x) = 3 + 5 = 8$$

 $D_y(z) = c(y,z) + D_z(z) = 3 + 0 = 3$

	х	У	Z
X	0	1	5
у	1	0	3
z	5	3	0

x:
$$D_z(x) = c(z,x) + D_x(x) = 5 + 0 = 5$$

 $D_z(y) = c(z,x) + D_x(y) = 5 + 1 = 6$

y:
$$D_z(x) = c(z,y) + D_y(x) = 3 + 1 = 4$$

 $D_z(y) = c(z,y) + D_y(y) = 3 + 0 = 3$

Each node updates its vector with the smallest distance

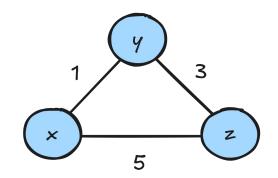


Table of node x

	х	у	z
х	0	1	4
у	1	0	3
z	5	3	0

y:
$$D_x(y) = c(x,y) + D_y(y) = 1 + 0 = 1$$

 $D_x(z) = c(x,y) + D_y(z) = 1 + 3 = 4$

z:
$$D_x(y) = c(x,z) + D_z(y) = 5 + 3 = 8$$

 $D_y(z) = c(x,z) + D_z(z) = 5 + 0 = 5$

Table of node y

	Х	у	Z
х	0	1	5
у	1	0	3
z	5	3	0

x:
$$D_y(x) = c(y,x) + D_x(x) = 1 + 0 = 1$$

 $D_y(z) = c(y,x) + D_x(z) = 1 + 5 = 6$

z:
$$D_y(x) = c(y,z) + D_z(x) = 3 + 5 = 8$$

 $D_y(z) = c(y,z) + D_z(z) = 3 + 0 = 3$

	х	у	z
х	0	1	5
у	1	0	3
z	4	3	0

x:
$$D_z(x) = c(z,x) + D_x(x) = 5 + 0 = 5$$

 $D_z(y) = c(z,x) + D_x(y) = 5 + 1 = 6$

y:
$$D_z(x) = c(z,y) + D_y(x) = 3 + 1 = 4$$

 $D_z(y) = c(z,y) + D_y(y) = 3 + 0 = 3$

Each node advertises its updated table to the neighbors

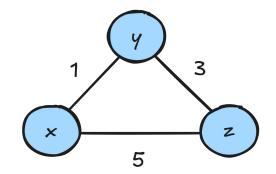


Table of node x

	х	у	z
х	0	1	4
у	1	0	3
z	4	3	0

Table of node y

	х	у	Z
х	0	1	4
у	1	0	3
z	4	3	0

Table of node z

	х	у	z
х	0	1	4
у	1	0	3
z	4	3	0

x will advertise table to **y**, **z**

y's vector did not change so it does not advertise

z will advertise table to x, y

Each node re-calculates its vector There are no changes → the algorithm has **converged!**

	х	у	z
х	0	1	4
у	1	0	3
z	4	3	0

z:
$$D_x(y) = c(x,z) + D_z(y) = 4 + 3 = 7$$

 $D_x(z) = c(x,z) + D_z(z) = 4 + 0 = 4$

Table of node y

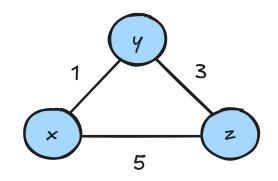
	х	у	Z
X	0	1	4
у	1	0	3
z	4	3	0

x:
$$D_y(x) = c(y,x) + D_x(x) = 1 + 0 = 1$$

 $D_y(z) = c(y,x) + D_x(z) = 1 + 4 = 5$

z:
$$D_y(x) = c(y,z) + D_z(x) = 3 + 4 = 7$$

 $D_y(z) = c(y,z) + D_z(z) = 3 + 0 = 3$



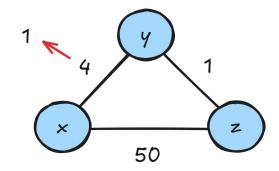
	х	у	z
X	0	1	4
у	1	0	3
z	4	3	0

x:
$$D_z(x) = c(z,x) + D_x(x) = 4 + 0 = 4$$

 $D_z(y) = c(z,x) + D_y(y) = 4 + 1 = 5$

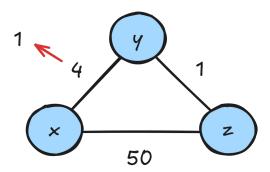
Distance Vector - Good News Travels Fast

- Link (x-y) changes cost: 4 → 1
- **t**₀: **y** detects the change
 - updates its vector
 - notifies its neighbors
- t₁: z receives update from y
 - o updates its vector for $\mathbf{z} \rightarrow \mathbf{x}$: $5 \rightarrow 2$
 - notifies its neighbors
- t₂: y receives update from z
 - o updates its table
 - least costs have not changed → does not advertise
 - algorithm has converged

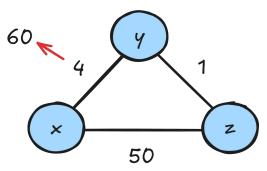


Distance Vector - Good News Travels Fast

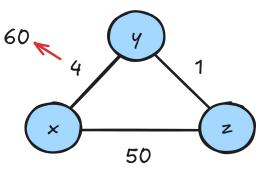
- Link (x-y) changes cost: $4 \rightarrow 1$
- t_a: y detects the change
 - updates its vector
 - notifies its neighbors
- t₁: z receives update from y
 - updates its vector for $\mathbf{z} \rightarrow \mathbf{x}$: $5 \rightarrow 2$
 - notifies its neighbors
- t₂: y receives update from z
 - updates its table
 - least costs have not changed → does not advertise
 - algorithm has converged
- Only 2 iterations for the algorithm to converge \rightarrow **Good news travels fast!**



- Before change: $D_{y}(x) = 4$, $D_{y}(z) = 1$, $D_{z}(y) = 1$, $D_{z}(x) = 5$
- Link (x-y) changes cost: 4 → 60
- **t**_n: **y** detects the change
 - Calculates new cost to x
 - $D_{y}(x) = \min \{ c(x, y) + D_{x}(x), c(y, z) + D_{y}(x) \} = \min \{ 60 + 0, 1 + 5 \} = 6$
 - By looking at the graph we can tell that this new cost is obviously wrong
 - But node y only knows what is in its table
 - So node y, in order to reach x, will route through z
 - expecting z to be able to reach x with only cost 5
 - Routing loop
 - node y, in order to reach x, will route through z
 - node z, in order to reach x, will route through y



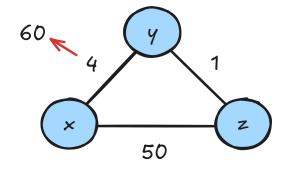
- Before change: $D_{y}(x) = 4$, $D_{y}(z) = 1$, $D_{z}(y) = 1$, $D_{z}(x) = 5$
- Link (x-y) changes cost: 4 → 60
- t_n: y detects the change
 - Calculates new cost to x
 - $D_{y}(x) = \min \{ c(x, y) + D_{x}(x), c(y, z) + D_{y}(x) \} = \min \{ 60 + 0, 1 + 5 \} = 6$
 - By looking at the graph we can tell that this new cost is obviously wrong
 - But node y only knows what is in its table
 - So node y, in order to reach x, will route through z
 - expecting z to be able to reach x with only cost 5
 - Routing loop
 - node y, in order to reach x, will route through z
 - node z, in order to reach x, will route through y
 - ping-pong situation



- t₁: y calculates new cost to x
 - Notifies z

z receives update:
$$D_y(x) = 6$$

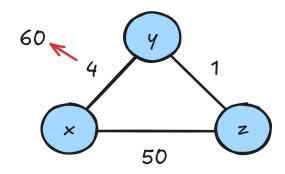
- Calculates new cost to x
- O $D_{7}(x) = min\{50 + 0, 1 + 6\} = 7$
- Updates its vector
- Notifies y
- **y** receives update, calculates new $D_y(x) = 8$
- **z** receives update, calculates new $D_y(x) = 9$
- and so on...



- How long will this go on?
 - 44 iterations
 - Until **z** calculates that the cost through **y** is higher than 50
 - **z** will set the path to **x** through the direct link with **x**
 - y will set the path to x through z

Count-to-Infinity Problem

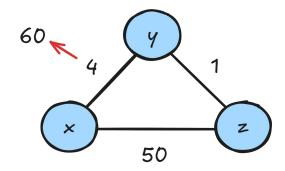
Because of the many iterations



44 iterations for the algorithm to converge → **Bad news travels slow!** •

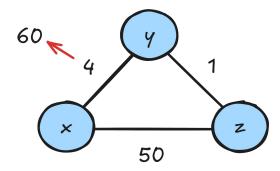
Distance Vector - Poisoned Reverse

- The previous scenario can be avoided
- Using a technique called poisoned reverse
 - If z routes through y to reach z
 - Then **z** will tell **y** that its distance from **x** is infinite: $\mathbf{D}_{\mathbf{z}}(\mathbf{x}) = \mathbf{\infty}$
 - o y now believes that z does not have a route to x
 - So y will not try to route though z to reach x
- When the change from 4 to 60 happens:
 - **y** updates its table
 - Keeps routing to **x** via the **direct link**
 - Informs **z** about its new cost to x: $D_y(x) = 60$



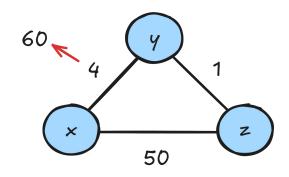
Distance Vector - Poisoned Reverse

- z receives update from y
 - changes its vector the cost of the direct link: $D_z(x) = 50$
 - o notifies **y**
- y receives update from z
 - changes its vector: $\mathbf{D}_{\mathbf{y}}(\mathbf{x}) = \mathbf{51}$
 - o now **y** is the one doing the poisoning
 - tells **z** that $\mathbf{D}_{\mathbf{v}}(\mathbf{x}) = \infty$



Distance Vector - Poisoned Reverse

- z receives update from y
 - changes its vector the cost of the direct link: $D_{7}(x) = 50$
 - o notifies **y**
- y receives update from z
 - changes its vector: $\mathbf{D}_{\mathbf{y}}(\mathbf{x}) = \mathbf{51}$
 - o now **y** is the one doing the poisoning
 - tells **z** that $\mathbf{D}_{\mathbf{v}}(\mathbf{x}) = \infty$



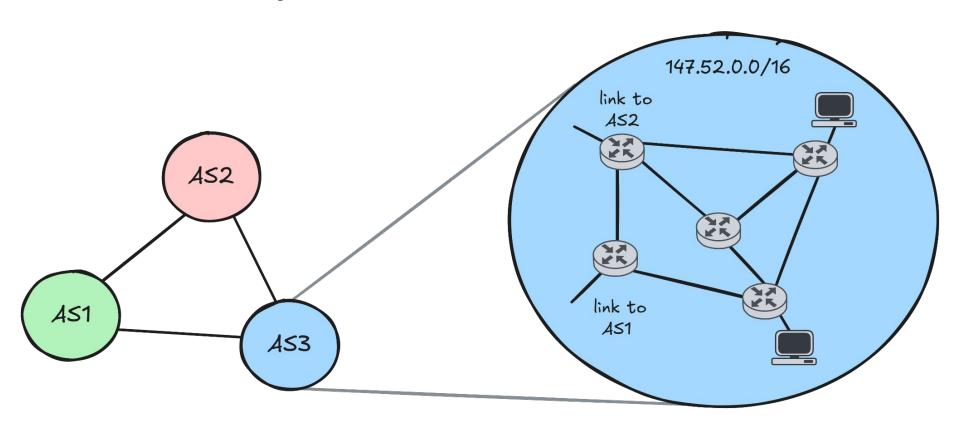
Does poisoned reverse solve the count-to-infinity problem?

No, if the loops included 3 or more nodes, they would not be detected.

Autonomous System

- A group of routers which operate under the same management
- Each AS has a unique number identifier called Autonomous System Number
 (ASN) (ex. 6867)
- The routers of each AS share a common prefix (ex. 147.52.0.0/16)
- Each organization (Facebook, Google, Amazon etc.) has one or more ASes in different locations

Autonomous System



AS Routing Protocols

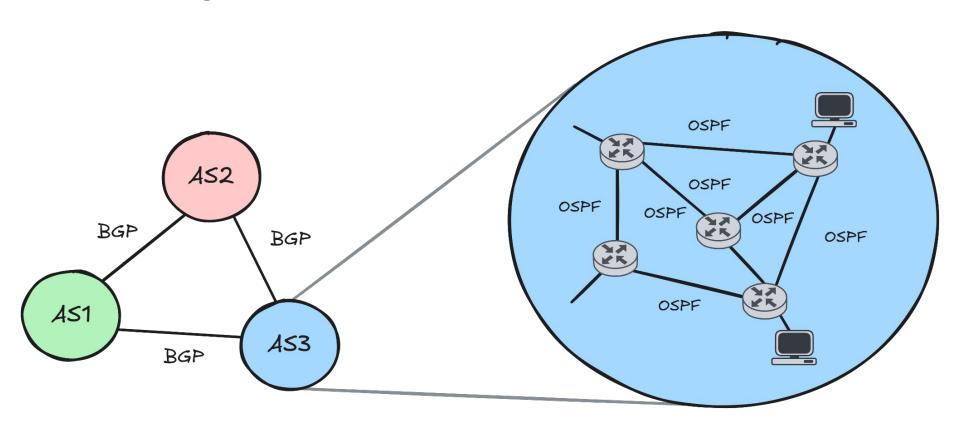
Intra-AS routing

- Determines how the traffic flows inside the AS
- Example: OSPF, IGRP, RIP, IS-IS

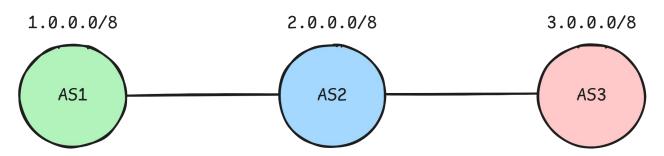
Inter-AS routing

- Determines how the traffic flows among different ASes
- Example: BGP
 - This is what the actual Internet uses

AS Routing Protocols

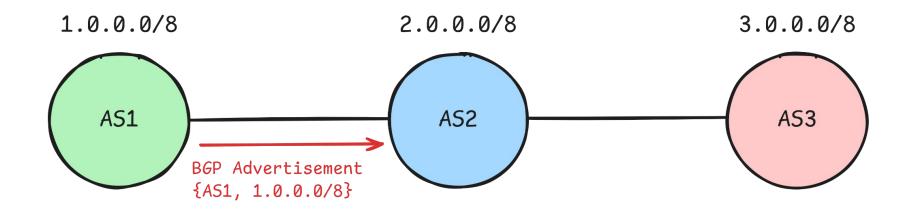


- Purpose: routing between ASes
- An AS will advertise its prefix so that it is known to the rest of the Internet
- It does not calculate routes towards a specific IP
- But to a prefix that belongs to an AS
- Uses Path Vector algorithm
 - A modified version of distance vector
 - Uses **paths** (**sequence of ASes**) instead of distances

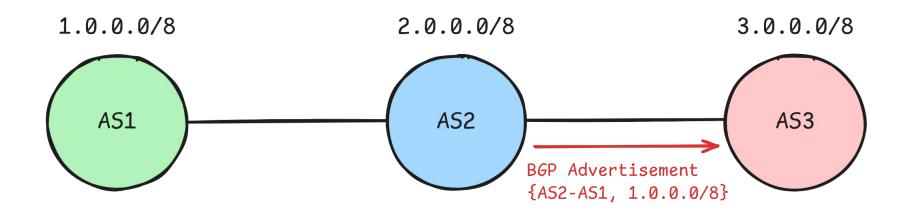


Let's see a simplified example:

- **AS1** will send a **BGP advertisement** to its neighbor AS2
- Includes: **ASN** and its **prefix**

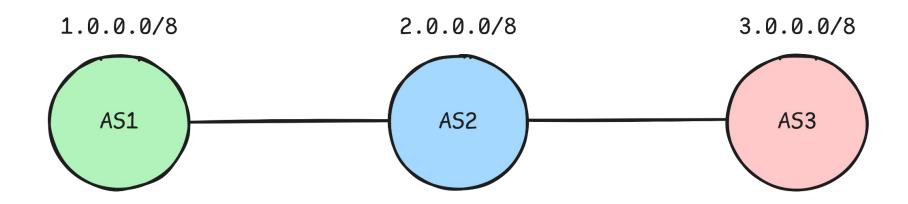


- **AS2** will add its **ASN** to the AS-PATH
- And send a BGP advertisement to its neighbor AS3



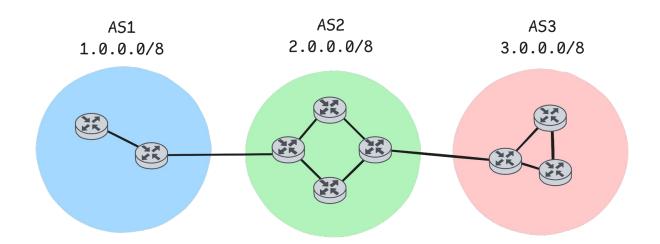
Now AS2 and AS3 know that:

- to reach any destination IP that belongs to prefix 1.0.0.0/8
- must send to AS1



Let's take a closer look at BGP:

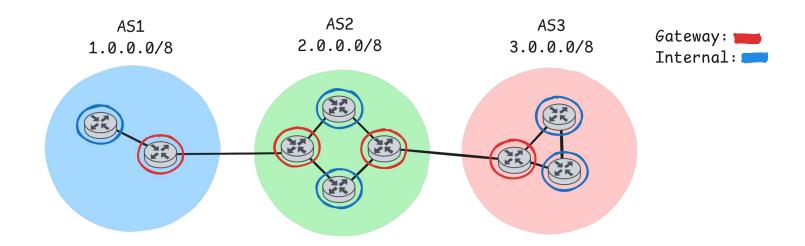
- Gateway router: router that connects to another AS
- Internal router: router inside an AS, connects only to routers/hosts inside that AS



BGP - Routers

Let's take a closer look at BGP:

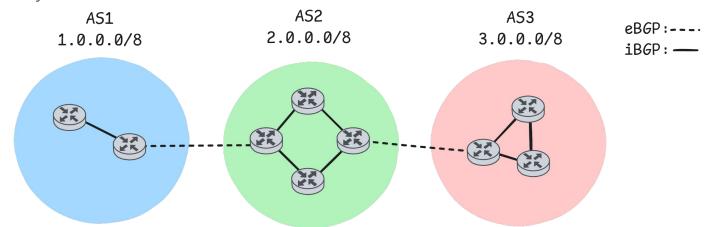
- **Gateway router:** router that connects to *another AS*
- Internal router: router inside an AS, connects only to routers/hosts inside that AS



BGP - eBGP & iBGP

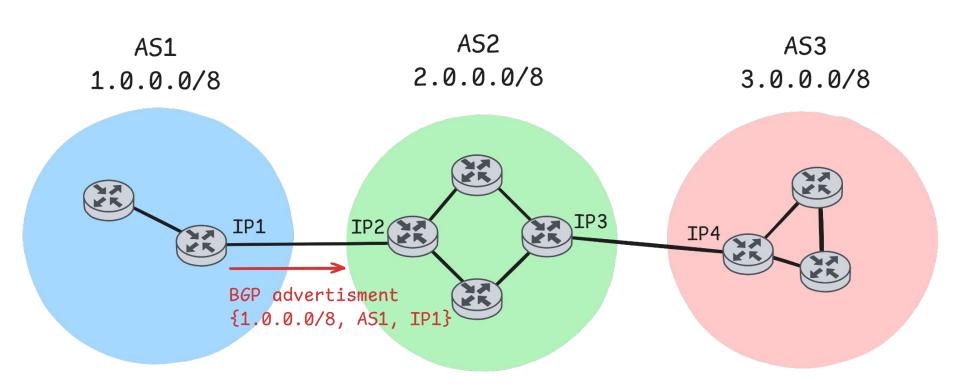
BGP is separated to two protocols:

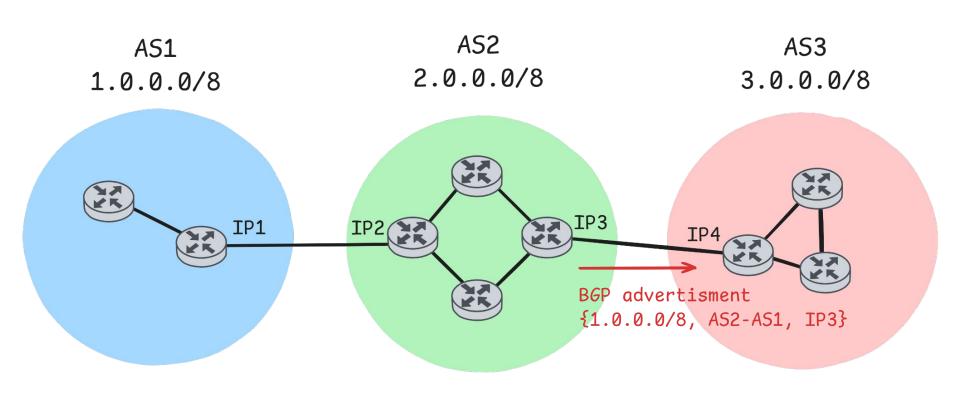
- **eBGP**: exchange reachability information from neighboring ASes
- **iBGP**: propagate this information to all AS-internal routers
 - o Internal routers run iBGP,
 - Gateway routers run both eBGP and iBGP



BGP - Attributes

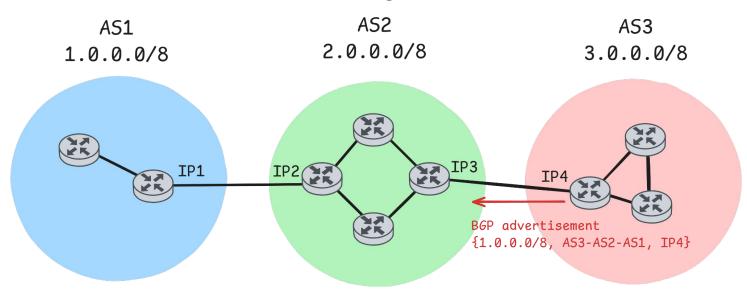
- Beside prefix, BGP advertisements include **attributes**
- Prefix + Attributes = BGP Route
- Some important attributes:
 - AS-PATH: Shows the ASes from which the advertisement has passed through (the sequence of ASNs we saw in previous examples)
 - **NEXT-HOP:** Shows the IP of the next hop router interface, that the AS-PATH starts from





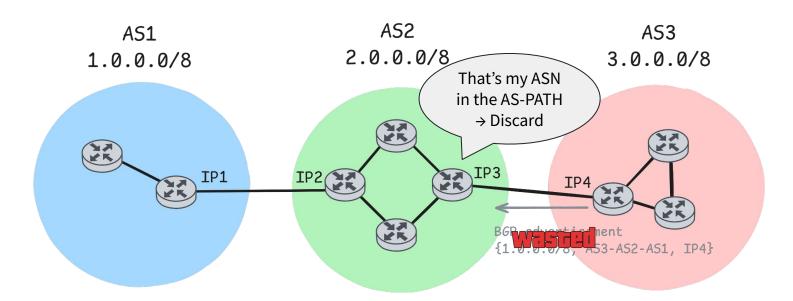
BGP - Loop Prevention

- AS3 will advertise the route back to AS2, since AS2 is a neighbor
- That could lead to advertisement loops
 - AS3 sends to AS2, AS2 sends to AS1 and AS2 again and so on...



BGP - Loop Prevention

- To prevent loops, if an AS sees its own ASN in the AS-PATH
- It **discards** the advertisement



BGP - Path Selection

How are paths chosen?

- By default BGP chooses the shortest path
 - Path that passes through the least ASes
- **Local Preference:** a BGP attribute
 - An integer value
 - Used to apply **policies** (i.e. prefer to send traffic through this AS, avoid this AS etc.)
 - Paths with **higher** local preference **are prefered**

Sum Up

Routing Algorithms

Link-State Routing Algorithms (Centralized)

Dijkstra's Algorithm

A link-state algorithm

OSPF

Protocol that uses Dijkstra's Algorithm
Intra-AS routing

Decentralized Routing Algorithms

Distance Vector Algorithm

A decentralized algorithm
Uses the **Bellman-Ford** equation

BGP

Protocol that uses Path Vector algorithm (a modification of Distance Vector)

Inter-AS routing

Questions???

